NIUF 404-92

North American ISDN Users Forum
Application Software Interface (ASI)

Part 2. MS-DOS Access Method (Version 1)

Approved: June5, 1992

Application Software Interface Expert Working Group
ISDN Implementors’ Workshop
North American ISDN Users’ Forum

Revision History

June 1992 Baseline Approved Document (NIUF 404-92)

Abstract

This document describes the Application Software Interface (ASI) access method for the MS-DOS operating system.
Although itisadesired goal to have acommon ASl for all operating systems, this specification will only apply to the
MS-DOS operating system environments. The following restrictions will also apply:

» Thisaccess method only appliesto areal mode application and will not service any protected
mode shells.

* DOSVersion 3.2 will be the minimum reguired DOS revision.

» Thisissue supports one AE and one PE.

Keywords

application programming interface; API; Application Software Interface; ASl; access method; DOS; implementation
agreement; ISDN;

Notice of Disclaimer

This specification was developed and approved by organizations participating in the North American ISDN Users
Forum (NIUF) meetings in June 1992. The National Institute of Standards and Technology (NIST) makes no
representation or warranty, express or implied with respect to the sufficiency, accuracy, or use of any information or
opinion contained herein. The use of thisinformation or opinion is at the risk of the user. Under no circumstances
shall NIST beliablefor any damage or injury incurred by any person arising out of the sufficiency, accuracy, or use of
any information or opinion contained herein.

Acknowledgments

NIST would like to acknowledge the NIUF Application Software Interface Expert Working Group, and especialy the
following individuals, for their valuable contributions to this document:

Kenneth A. Argo
Ron Bhanukitsiri
Cheng T. Chen
Stephen Halpern
Frank Heath
Dory Leifer

Jim Loehndorf
Ned McCook
Chris Nix
Stephen Rogers
Chris Schmandt
Ben Stoltz
Raobert E. Toense
Adrian Viego
Wayne Yamamoto

ICL

Digital Equipment Corp.
Teleos Communications, Inc.
NYNEX Science and Technology
Rockwell CMC

Univ. of Michigan
Ameritech Services
DGM&S

IBM

Electronic Data Systems
MIT MediaLab

Sun Microsystems, Inc.
NIST

Bellcore

Sun Microsystems, Inc.

Vi

NOLICE Of DISCIAIMES ... e s v
ACKNOWIEBAGMENTS ...t Y
OO T oo o 1 SRR 1
P22 @ 1Y | = S 1
3.0. Address Resolution DEVICE DITVENccccoiiiiieriesiereeie ettt 1
3.1. (O Y= VT USSR 1
3.2. Registration and BindinNg PrOCESS..........ciiiiiereieieeerereee et s re e 2
4.0. ARDD MeESSage FOIrMAaL......cccciiiiiiieiiieesiie ettt sne e s nnr e nes 4
5.0. Callback FUNCLION DEfINITIONS......c.oiiiiieeceseee e e 4
5.1. AR Management Function Callback Definition...........occeveiiiniininesse s 5
5.2 Management/Control Plane Callback Definition ... 5
53. User Plane Callback DEfiNitiONccovieiirirerereee et 5
6.0. ARDD COMMANGScoitiiiiiiiiiieie ettt sttt e e et st esbe e besneesaeessesneesbeensesneenees 5
6.1. AR-BIND_Mc confirmation [OXOL]ccceererereerieereeesieestesesresesre s sesreseeseseeseseesesnesesnenesseneas 6
6.2. AR-BIND_Up confirmation [OX03]ccoeuereerieierieerieesieesiesesresesre s seeseseeseseeseseesesnesessenesseneas 6
6.3. AR-UNBIND_MC indication [OX05]cceerueuerieuirierireeesieesieesresesresesresesreseeseseeseseeseseesesnesesseneas 6
6.4. AR-UNBIND_UpP indiCation [OXO7]corevereererieieriererieesieesiesessesesre s seeseseeseseeseseesesnesesnesesseneas 6
6.5. AR-UNBIND_MC reqUESE [OX0B]vveorveereeeeeeeeseeesesesssssssssssssssssssssssssssessssssssssssssasssssnsssnnees 6
6.6. AR-UNBIND_UP reqUESE [OX08]ovvveerveereeeeeeeeseeesesesesssssssssssssssssssssssssesssssssssssssssssssssssnsees 7
6.7. AR-BIND_MC FEQUESE [OX02]coorvvoreeereeeseeeseseesesesissssesssnssssssssssessssesssesssassssssssssssssasssssesssnsees 7
6.8. AR-BIND_UP reqUESE [OXO4]eiveeeeereetereetereeierieie sttt e ebe s ebe e saesesae e snesesneeeneneas 7
6.9. AR-UNBIND_ALL iNAICATION [OX09] ..ottt sssnesnsssesessenenes 7
7.0. ARDD ACCESS FUNCLIONS......coiiiiieiientieieseie s eeeeee e ae e st te e e sseesesneesseenseeneesseensesnensees 7
7.1. Open File With HandI€ (0X3D)coueeieiiieeriererie ettt 7
7.2. Close File With HandI€ (OX3E)cciueiruiiriirieirieiesie sttt 8
7.3. Send Control Data to a Character Device (OX4403) ..o 8
74. GENEral IOCTL (OXA40C)oviuiiiniriiesieeeier ettt sttt b et b et nnee 9
8.0. SpeCial COMMANS.....cc.iiiiieiierie ettt ae e esbeeeesseesbeeeesneenseas 10
8.1. Get Version Number - Minor Code (0X80)cvevererueriererieierieierieesieesieeseee s seenes 10
8.2. Get ARDD Status Return - Minor Code (0X8L)ceuerverereeririeierieerieisieesieesiesesieseeseseee e seens 10
Appendix A: ARDD StAtUS COUES........coiirieiieiiieiie ettt sttt sae b e s neennee s 12
APPENIX B: REFEIBNCES.......o it b e bbb 13

vii

viii

1.0. Scope

This document describes the Application Software Interface (ASI) access method for the MS-DOS operating system.
Although itisadesired goal to have acommon ASl for all operating systems, this specification will only apply to the
MS-DOS operating system environments. The following restrictions will also apply:

» Thisaccess method only appliesto areal mode application and will not service any protected mode
shells.

* DOSVersion 3.3 will be the minimum reguired DOS revision.

2.0. Overview

The ASI access method must support the transfer of information and the thread of execution across the interface. To
accomplish these functions and provide for the implementation independence, the MS-DOS access method uses a
called interface.

The MS-DOS operating system environment only supports a single thread of execution and a single process (thereis
no scheduler). While some special shells exist which provide task switchingin the processor's protected mode,
their caseisnot covered by this access method.

In this environment, the ASI must provide the basic mechanism to transfer the thread of execution across the
interface. This mechanism must also be available from either side of the ASI to support the bi-directional
asynchronous operation of thisinterface. The MS-DOS access method, as stated above, will utilize far function calls
in both ASI Entity (AE) and Program Entity (PE) as the basic mechanism to transfer the thread of execution. To
resolve the addresses of these far functions, the MS-DOS access method has defined a dynamic linking mechanism
referred to as the Address Resolution Device Driver (ARDD). This device driver is defined in detail in the next
section. In order to keep ARDD management messages separate from ASI command messages, the AE and PE will
have an Address Resolution M anagement Function (ARMF) which they will use to receive messages from the
ARDD.

ASI functionality requires that the ASlI must provide three basic services. management, control, and data. The
management and control services, in the MS-DOS access method, will be implemented as asingle ASI function.
There can only be one management/control (MC) function per ASI entity. Thisisalso true for the program entity. The
user plane (UP) service is defined as a separate ASI function. There can be more than one user plane function
associated with either the AE or PE.

The information transfer mechanism, acrossthe ASI, will be specific to the access method function. For all
management/control plane transfers, the calling entity (AE or PE) will format amessage. This message will be passed
across the interface by reference (a message pointer). The called ASI access method management/control function
will be responsible for transferring the contents of that message at the time of the call. As soon as the called entity
return to the calling entity, the message pointer and its contents are invalid.

The user plane function is similar to the management/control plane. Messages will be passed across the interface by
reference (adata pointer). The called ASI access method user plane function will be responsible for transferring the
contents of that message at the time of the call. As soon asthe called entity returns the thread of execution to the
calling entity, the message pointer and its contents are invalid.

3.0. Address Resolution Device Driver

3.1 Overview

The Address Resolution Device Driver (ARDD) is a generic address resolution utility defined for the MS-DOS
operating system by the ASI. It can be used to resolve or bind any interface. The ARDD is acharacter device driver
that has these specific characteristics:

1. The ARDD contains multiple device driverslogically linked together. The names shall be
"ARDDAEQQ" and "ARDDPEQQ".

2. Thedevice attribute word in the device header shall be coded such that the device is a character device
that will support "open”, "close”, "IOCTL Read", and "IOCTL Write" calls. Thisvalue should be
0xC840.

3. Information is passed to the device driver viathe IOCTL Write command, and returned by the device
driver through acall to the AR Management Function callback (see section 3.2 "Registration and Binding
Process' for more details).

4. [Initialization, Open, Close, IOCTL Write, and Generic IOCTL are the only valid commands that this
device driver will process.

5. The ARDD must be thefirst device driver installed in the "config.sys' file driver list relative to any
device driver that may utilize the ARDD.

6. The ARDD will respond to the Generic IOCTL, Category = ARDD (0x0A), Minor Code = "Get Version
Number (0x80)", with a Major value of 0x10 and Minor value of 0x0.

7. The ARDD will respond to the Generic IOCTL, Category = ARDD (0x0A), Minor Code ="Get ARDD
Status Return (0x81)", with the status of the last error.

Beyond these requirements, there are no sequence related dependencies imposed upon the user. This means that no
restrictions are placed on the AE and PE with regards to which one loads or binds first.

The ARDD uses asimple command interface. The valid commands are;

* AR-BIND_Mc confirmation 0x01
* AR-BIND_Mc request 0x02
* AR-BIND_Up confirmation 0x03
* AR-BIND_Up request 0x04
 AR-UNBIND_Mc indication 0x05
* AR-UNBIND_Mc request 0x06
 AR-UNBIND_Upindication 0x07
« AR-UNBIND_Up request 0x08
« AR-UNBIND_ALL request 0x09

NOTE: Thereareno "response" primitivesin thisversion of the DOS access method.

3.2. Registration and Binding Process

To provide symmetry with the rest of the ASI, the ARDD binding procedure is asynchronous. In order to providethis
asynchronous operation the request and confirm operations are non-symmetrical. The request operation is carried out
viaan IOCTL " Send Control Datato a Character Device" (INT 21, function 0x4403) which resultsin acall to the
device driver's IOCTL Write entry point (remember, the calling program must open the device driver first). The
confirm operation is carried out when the ARDD calls the AR Management Function (ARMF) callback of the AE or
PE which was supplied during the request operation.

It isimportant to note that while there is only one ARDD, it has two entry points. This allowsthe ARDD to more
easily differentiate between two entities which need to be bound since each entity will always call upon a specific
entry point. When abind request arrives at each entry point carrying the sameid, the ARDD notifies both entities of
the resulting match. Also, by having two entry points which always remain open (while the calling entity is active),
the ARDD is capable of detecting when a process goes away prematurely and can send AR_UNBIND_ALL
indications to the other entity to provide for graceful cleanups.

Thefollowing scenario represents atypical load and address resolution procedure. While this scenario is not specific
about each step that an entity performs or the time frame in which an action occurs, it is assumed that all entities are
well behaved relative to their environment and follow proper procedural practices. This scenario makes the
assumption that the AE was loaded first. With that assumption, the sequence of these events must be observed. This
scenario also assumes no errors (either logical or physical) occur.

While this scenario istypical, it in no way impliesthat it is the only valid sequence which can be used. Steps9 - 15,
for instance, can easily be changed to present a scenario where the PE initiates the User Plane binding.

1. The Address Resolution Device Driver (ARDD) loads and initializes.

2. TheASl Entity loads. It then opensthe ARDD using the name"ARDDAEQQ". Using the device handle
returned on the open, the AE formatsan AR-BIND_Mc request and issuesit tothe ARDD viathe |OCTL
"Send Control Datato aCharacter Device" command. Thisrequest containsthe AE's M C planefunction
address and the AE's Address Resolution Management Function (ARMF) address.

Note: Do not closethe ARDD.

3. TheARDD registersthe MC and ARMF addresses and returnsan OxA1inthe AL register with the Carry
Flag Set.

3a. The AE issuesthe IOCTL "Generic IOCTL" with the category set to ARDD [0x0A] and the minor code
set to "Get ARDD Status Return” [0x81]. The code returned in the status word will be 0x00A 1
(registered).

4. The Program Entity loads. It then opensthe ARDD using the name "ARDDPEQOQ". Using the device
handle returned on the open, the program entity formats an AR-BIND_Mc request and issuesiit to the
ARDD viathe IOCTL "Send Control Datato a Character Device". This request containsthe PE'sMC
plane function address and the PE's Address Resolution Management Function (ARMF) address.

Steps 5 - 8 occur while the ARDD is servicing the interrupt routine which resulted from the IOCTL call instep 4.
5. The ARDD registersthe MC and ARMF addresses of the PE.

6. The ARDD callsthe PE's ARMF callback with an AR-BIND_Mc confirmation, passing the AE'sMC
function address. The callback returns 0x00 to the ARDD.

7. The ARDD callsthe AE's ARMF callback with an AR-BIND_Mc confirmation, passing the PE'sMC
function address. The callback returns 0x00 to the ARDD.

8. The ARDD returns a 0x00 to the PE (This completes the IOCTL call in step 4).

At this point the PE and AE arebound. The PE caninitiate acall to the AE's management/control plane function.
Viathis function, configuration of the ASI entity can take place (see fig. 3 in this document).

9. ThePE calsthe ARDD with an AR-BIND_Up request passing the user plane and management/control
plane function (far) addresses (Reference_Id = 0x00000005). The ARDD returns OxA1 to the PE.

10. The PE callsthe AE's control plane function with an Nb-CONNECT request (PEI = 0x0005).

11. TheAE callsthe ARDD withan AR-BIND_Up request, passing the user plane data, and control function
(far) addresses (Reference _|d = 0x00060005).

12. The ARDD calls the PE with an AR-BIND_Up confirmation passing the AE's user plane function (far)
address (Reference_|d = 0x00060005).

13. The ARDD callsthe AE with an AR-BIND_Up confirmation passing the PE's user plane function (far)
address (Reference_Id = 0x00060005).

14. Here, we assume that the appropriate processing goes on in the AE, and an ISDN SETUP is sent to the
network.

15. The ARDD returns 0x00 to the AE.

16. A CONNECT isreceived from the network, which then generates an interrupt to transfer the thread of
execution to the AE's interrupt handler.

17. The AE callsthe PE control plane function with an Nb-CONNECT confirmation (AEI = 0x0006, PEI =
0x0005). The PE returns 0x00.

18. The AE issues an interrupt return (IRET) and transfers the thread of execution back to the PE.
Now both the PE and AE can effect data transfers by calling the other’s data and control function.

The control function address provides a mechanism for data-synchronous user plane control information. The use of
thisinformation will be specific to the peer-to-peer data protocol employed across the ISDN connection. The format
of the user plane control messagesis for further study.

Note: The PE's callback routine should only queue messages and return immediately so that the thread of
execution can travel back and forth effectively. Once the AE returns control to the PE, the PE can the
check the messages which have been posted, and act on them accordingly.

4.0. ARDD M essage For mat

Messages which are sent to the ARDD viathe IOCTL "Send Control Data to a Character Device" command or
received from the ARDD viathe AR Management Function have the following format.

Byte(s) Contents

1 Command
2-5 Reference |Id
6-9 Callback_Address 1
10-13 Callback_Address 2
Note: Referenece_|d contains a copy of the four octets, 2 through 5, as defined in Part 1, Commands chapter,
Message Format section.
5.0. Callback Function Definitions

This ASI access method defines three types of callback routines:
ARMF ARDD M anagement Function
MC Management / Control plane
UP User Plane

These callback routines provide for the asynchronous transfer of information typically in the Up Stream (going from
an entity which islogically lower in the architecture to one which islogically higher) direction. The exception isthe
ARDD's ARMF callback which is used by the ARDD to provide indications and confirmations to both the AE and
PE.

This section provides the calling sequences for the various callback functions. All of the callbacks provide the same
return codes as defined below.

If successful, the CARRY flag will be cleared and the AX register will be set to 0. If the transfer fails, the
CARRY flag will be set and AX will contain one of the error codes found in Appendix A.

NOTE: Thecallback isresponsiblefor preserving all registers except AX; the caller isresponsible for maintaining
stack integrity. Error codes are returned in AX.
5.1. AR Management Function Callback Definition

The AR Management Function callback transfers the thread of execution and the message from the ARDD to the
called entity. The following calling procedure will be used:

PUSH WORD MsgSi ze Bytes in Data Message
PUSH DWORD MsgPt r Pointer to Data Message (ARDD Formatted buffer)
CALL AR _Cal | back

5.2. M anagement/Control Plane Callback Definition

The Management/Control Plane callback transfers the thread of execution and the message from the calling entity to
the called entity (i.e., PE->AE or AE->PE). Thefollowing calling procedure will be used:

PUSH WORD MsgSi ze Bytes in Data Message
PUSH DWORD MsgPt r Pointer to Data Message (ASI Fornatted buffer see Conmand
section in Part 1)
CALL Mc_Cal | back
5.3. User Plane Callback Definition

The User Plane callback transfers the thread of execution and the message from the calling entity to the called entity
(i.e, PE->AE or AE->PE). Thefollowing calling procedure will be used:

PUSH WORD Dat aSi ze Bytes in Data Message

PUSH DWORD Dat aPtr Pointer to Data Message (Protocol Specific)
PUSH WORD CtlSize Bytes in Control Message

PUSH DWORD ClPtr Pointer to Control Message (Protocol Specific)
CALL Up_Cal I back

Note: The Control Message may not be required for most data transfers. The Control Message should be used
when a protocol requires the passing of signaling information to upper layers which is synchronized with
adatamessage. When a control message is not present, the CtlSize should be set to zero and CtIPtr is
invalid. CtlSize being set to zero informs the receiving entity to ignore CtIPtr. When a datamessageis
not present, the DataSize should be set to zero and the DataPtr isinvalid. DataSize being set to zero
informs the receiving entity to ignore DataPtr.

6.0. ARDD Commands

This section contains the descriptions of the messages associated with each ARDD command. When reading this
chapter, the following criteria applies:

Each section title contains the Command Name in bold letters followed by an indicator which denotes the
direction of the command (request or confirmation).

There are four types of indicators which are possible;

request requests are sent from the AE or PE to the ARDD to specify a BIND or UNBIND
procedure.
confirmation confirmations are sent from the ARDD to the AE or PE to specify the completion of a

BIND or UNBIND procedure.

indication indications are sent from the ARDD to the AE or PE to inform them of an unsolicited
event (i.e., an AR-UNBIND_Up. indication is sent to the PE if the AE sends an AR-
UNBIND_Up request to the ARDD).

response responses are sent from the AE or PE to the ARDD to acknowledge the reception of an
indication. NOTE: Thisversion of the DOS access method doesnot issueresponses..

Following each titleis a brief description of the command and alisting of the required parameters. Values
for these parameters are not specified. Each title ends with the actual hex value of the command.

6.1. AR-BIND_Mc confirmation [0x01]

Provides the called entity with an acknowledgment that its management plane has been bound.

Ref erence_l d 4 bytes /]l set =0
Mc_Cal | back far pointer /1 Managenent / Control plane call back
Return:
See Appendix A
6.2. AR-BIND_Up confirmation [0x03]
Provides the called entity with an acknowledgment that its user plane has been bound.
Ref erence_l d 4 bytes /1l set = AEl / PEl pair
Up_Cal | back far pointer /1 User Plane call back
Return:
See Appendix A
6.3. AR-UNBIND_Mc indication [0x05]

Provides the called entity with an indication that the entity with which its management plane was bound is no longer
available.

Ref erence_l d 4 bytes /]l set =0
Return:
See Appendix A
6.4. AR-UNBIND_Up indication [0x07]
Providesthe called entity with an indication that the entity with which its user plane was bound is no longer available.
Ref erence_lId 4 bytes /1 set = AElI / PEl pair
Return:
See Appendix A
6.5. AR-UNBIND_Mc request [0x06]

Instructs the ARDD to remove its management plane entry from the appropriate list and notify the entity to which it
was bound that it is no longer available.

Ref erence_l d 4 bytes /Il set =0
Return:
See Appendix A

6.6. AR-UNBIND_Up request [0x08]

Instructs the ARDD to remove its user plane entries from the appropriate list and notify the entity to which it was
bound that it is no longer available.

Ref erence_l d 4 bytes /1 set = AEI / PEl pair
Return:
See Appendix A
6.7. AR-BIND_Mc request [0x02]

Instructs the ARDD to bind its management plane.

Ref erence_lI d 4 bytes /Il set =0
AR _Cal | back far pointer
Mc_Cal | back far pointer

Return:
See Appendix A

6.8. AR-BIND_Up request [0x04]
Instructs the ARDD to bind its user plane.

Ref erence_l d 4 bytes
AR _Cal | back far pointer
Up_Cal | back far pointer

Return:
See Appendix A

6.9. AR-UNBIND_ALL indication [0X09]
Instructs the ARDD to unbind al connections.

Ref erence_l d 4 bytes /]l set =0
Return:
0x0000 (014 /1 Operation successful
7.0. ARDD Access Functions

The following sections provide examples of the DOS functions used to communicate with the ARDD. For further
information, see Microsoft's MS-DOS Programmer's Reference (Document Number SY 0766b-R50-0691).

All of the functions in this section use services provided by interrupt 21h (33).

7.1. Open Filewith Handle (0x3D)

To open the ARDD, place the device name "ARDDAEOQOQ" or "ARDDPEOQQ" in a buffer and call DOS with a pointer
to that buffer.

Example:
nmov dx, seg FileNane ; get segnent of buffer
nmv ds, dx ; and place it in ds
nmov dx, offset FileName; ds:dx points to device nane
nmov al, 12h ; mode = OPEN_ACCESS_READWRI TE | OPEN_SHARE_DENYREADVRI TE

mov ah, 3Dh ; "Open File with Handl e"

int 21h ; call DOS for service
jc error_handl er ; if "CARRY" set, we had an error
nov Handl e, ax ; store handle for later
Fi | eNane DB ' ARDDAEOO' , 0 ; file name buffer
Handl e DW ? ; handl e returned from open
Return:

If "CARRY" flag clear:
AX = Handl e of open devi ce.

If "CARRY" flag set, AX may contain one of the following errors:

0002h File not found
0003h Pat h not found
0004h Too many open files
0005h Access Denied
000Ch Invalid Access
7.2. Close File with Handle (Ox3E)
To close the ARDD, provide the handle which was returned from the open.
Example:
nmv bx, Handl e ; handl e of device
nov ah, 3Eh ; "Close File with Handl e"
int 21h ; call DOs for service
jc error_handl er ; if "CARRY" set, we had an error
Handl e iDW? ; handl e returned from open
Return:

If "CARRY" flag clear:

function conpl et ed

If "CARRY" flag set, AX may contain the following error:

0006h Invalid Handl e

7.3. Send Control Datato a Character Device (0x4403)

To send commands to the ARDD, use the handle obtained from the open.
Example:

Assume that "Buffer" is a buffer containing a properly formatted ARDD message. "Handle" isaword which
received the result of the open. "MaxBytes' is aword which contains the actual number of bytesin "Buffer".
"ActualBytes' isaword which receives the results of the IOCTL.

nov bx, Handl e ; handl e of device
nmv cx, MaxBytes ; # of bytes to send
nov dx, seg Buffer ; get segnent of buffer

nov ds, dx

nov dx, offset Buffer ; ds:dx points to data
nov ax 4403h "Send Control Data to a
Char acter Device"

i nt 21h call DGCs for service

jc error_handl er ; i f "CARRY" set, we had an
; error

nov Act ual Bytes, ax ; nunber of bytes sent

Handl e b\N? ; handl e returned from open

Act ual Byt es DW ? ; hol ds nunber of bytes accepted by ARDD

Buf f er DB MaxBytes dup (?; the actual nunber of bytes required by your
; application nay differ

Return:

If "CARRY" flag clear:

function conpl eted

If "CARRY" flag set, AX may contain one of the following errors:

0001h Invalid Function

0005h Access Deni ed

0006h Invalid Handl e

000DH Invalid Data
7.4, General IOCTL (0x440C)

To send commands to the ARDD, use the handle obtained from the open.
Example:

Assume that "Buffer" isabuffer containing information to be passed to the ARDD or abuffer to receive information
fromthe ARDD. "Handle" isaword which received the result of the open. "MajorCode" and "MinorCode" represent
the command ID for the ARDD function you wish to have performed.

Note: The buffer must be large enough to hold any information returned by the ARDD.

nmv bx, Handl e ; handl e of device
nmov ch, Mj or Code ; major function code
nmv cl, M norCode ; mnor function code
nmov dx, seg Buffer ; get segnment of buffer
nmv ds, dx
nmov dx, offset Buffer ; ds:dx points to data
nmv ax 440Ch ; "General |OCTL"
int 21h ; call DOS for service
jc error_handl er ; i f "CARRY" set, we had an error
Handl e DW ? ; handl e returned from open
Buf f er DB 200 dup (?) ; the actual nunber of bytes required by each call
; may differ.
Return:

If "CARRY" flag clear:

function conpl eted

If "CARRY" flag set, AX may contain one of the following errors:

0001h I nvalid Function

0005h Access Deni ed

0006h Invalid Handl e

000DH Invalid Data
8.0. Special Commands

This version of the DOS access method defines a special category and two minor codes for use with the IOCTL
"Generic IOCTL". The special category is(0x0A) and is used to denote a"Generic IOCTL" meant only for the
ARDD. Theminor codes represent special commands which the ARDD must support through this IOCTL. This
section describes those commands.

8.1. Get Version Number - Minor Code (0x80)
Get Version Number is used by the AE and PE to get the version number of the DOS access method supported by the

ARDD. The calling entity passes the address of a buffer containing the buffer length in the first word. On return, the
first word contains the actual number of bytesfilled in. The structure of the buffer is asfollows:

Bytes Description
1-2 Length of buffer
3 Major Number
4 Minor Number
5-12 Vendor String
13 Vendor Major Number
14 Vendor Minor Number
mov ax, OEh ; Length of buffer
nov Buf fer, ax ; set the buffer length in the first byte
nov bx, Handl e ; handl e returned by DOS open
nov ch, 0Ah ; mejor function code (ARDD)
nmov cl, 80h ; mnor function code (Get Version Nunber)
nov dx, seg Buffer ; get segnent of buffer
nov ds, dx
nov dx, offset Buffer ; ds:dx points to data
nov ax 440Ch ; "Ceneral |OCTL"
int 21h ; call DOS for service
jc error_handl er ; if "CARRY" set, we had an error
Handl e iJ\N? ; handl e returned from open
Buf f er DB 14 DUP (?) ; Version Nunber [Version, Release, etc...]
8.2. Get ARDD Status Return - Minor Code (0x81)

Get ARDD Status Return allows the AE or PE to obtain the status message which indicates the ASI error which
occurred as aresult of an AR-BIND_xx or AR-UNBIND_xx request. Thiscall isonly used when arequest to the
ARDD by the AE or PE returns with the Carry Flag set. See Appendix A for possible values.

10

Handl e
Buf f er

bx, Handl e
ch, 0Ah
cl, 81h

dx, seg Buffer
ds, dx

dx, offset Buffer
ax 440Ch

21h

error_handl er

DW 2
DW 2

handl e returned by DOS open

maj or function code (ARDD)

m nor function code (Get ARDD Status Return)
get segnment of buffer

ds:dx points to data

"CGeneral | OCTL"

call DOS for service

if "CARRY" set, we had an error

handl e returned from open
Status Wrd

11

Appendix A: ARDD Status Codes

This section contains the definitions of the possible status returned by the ARDD after an unsuccessful bind or unbind
request.

Value Description

0x81 Message |length error
0x82 Invalid message pointer
0x83 Out of memory

0x84 Function not supported
0x85 Interface Busy

Value Description

0x0000 OK

0x00A1 Registered

0x00A2 Invalid Reference
0x00A3 Reference Not Unique
0x00A4 Active Register / Bind
O0x00A5 Not Bound

12

Appendix B: References

21
(1]

22
(]
(3]
(4]

(5]

(6]

(7]

(8]

2.3
(9]

(10]

24
(11]

[12]

ANS Documents

ANS T1.607-1990, Telecommunications — Integrated Services Digital Network (ISDN) — Digital
Subscriber Sgnalling System Number 1 (DSS1) — Layer 3 Sgnalling Specification for Circuit-Switched
Bearer Service.

CCITT Documents
CCITT Recommendation 1.320 - 1988, |SDN Protocol Reference Model.
CCITT Recommendation 1.515 - 1988, Parameter Exchange for ISDN Networking.

CCITT Recommendation Q.921-1988 (also designated CCITT Recommendation 1.441-1988), |SDN User-
Network Interface Data Link Layer Specification.

CCITT Recommendation Q.931-1988 (also designated CCITT Recommendation 1.451-1988), ISDN User-
Network Interface — Layer 3 Specification for Basic Call Control.

CCITT Recommendation V.110 -1988, Support of Data Terminal Equipments (DTES) with V-series Type
Interfaces by an Integrated Services Digital Network (ISDN).

CCITT Recommendation V.120-1988, Support by an ISDN of Data Terminal Equipment with VV-series Type
Interfaces with Provision for Statistical Multiplexing.

CCITT Recommendation X.25 -1984, Interface between Data Terminal Equipment (DTE) and Data Circuit-
Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data
Networks by Dedicated Circuit.

| SO Documents

SO 8824:1987(E), Information processing systems — Open Systems | nter connection — Specification of
Abstract Syntax Notation One (ASN.1).

SO 8825:1987(E), Information processing systems — Open Systems | nter connection — Specification of
Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).
Other Documents

NIST Specia Publication 500-183, Stable |mplementation Agreements for Open Systems I nterconnection
Protocols, Version 4, Edition 1, December 1990.

MS-DOS Programmer's Reference (Document Number SY 0766b-R50-0691).

13

